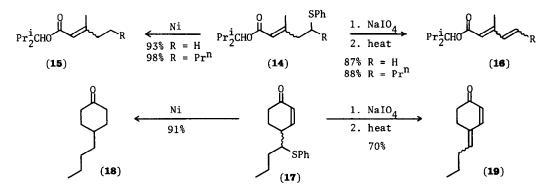

Tetrahedron Letters No. 34, pp 3209 - 3212. @Pergamon Press Ltd. 1979. Printed in Great Britain.

 $\gamma\textsc{-}alkylation$ of unsaturated ketones and esters: zinc bromide-catalysed alkylation of o-silylated dienolates 1

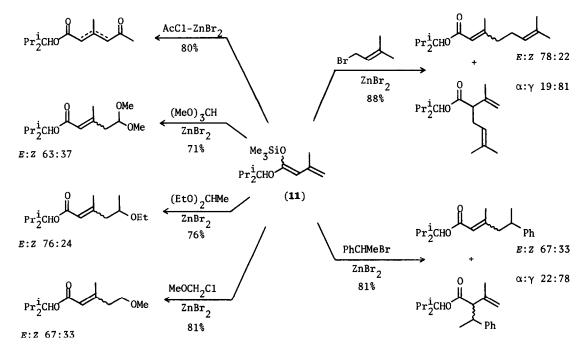
Ian Fleming, Jon Goldhill, and Ian Paterson (University Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW, England)

Summary: The O-silylated dienolates of unsaturated ketones and esters can be alkylated using zinc bromide catalysis to give predominantly the γ -alkylated carbonyl compounds. The substitution pattern of the substrate (1), favours, in certain cases, very high or complete γ -selectivity.

In the preceding paper we report that sulphenylation of O-silylated dienolates occurs with high γ -selectivity. In this paper we report on the α - versus γ -selectivity of a number of carbon electrophiles in their reactions with O-silylated dienolates (1 + 2 + 3). In almost all cases tried, the major product is that (3) of γ -attack, and in some cases it is overwhelmingly so. These results complement the high α -selectivity usually shown by lithium dienolates,^{2,3,4} and supplement the reactions of copper dienolates with allyl halides⁵ and less direct methods of encouraging γ -selectivity.⁶


The electrophiles we have studied most thoroughly are chloromethyl phenyl sulphide (4) and α -chloro-n-butyl phenyl sulphide (5) in the presence of zinc bromide; we have already shown that these are useful alkylating and alkylidenating agents for the C-silylated enolates of saturated carbonyl compounds.⁷ The results are summarised in the Table.

The α : γ ratios obtained were dependent upon the substitution pattern of the diene, the steric size of the alkoxy group (for esters), and the nature of the electrophile. The simple unsubstituted ketone- and ester-derived O-silylated dienolates (6 and 7) showed very similar selectivities. Introduction of an α -substituent (as in 8) gave only a small improvement in the γ -selectivity, while a β -substituent (as in 9) gave a significant increase in regioselectivity in


TABLE:	ZnBr ₂ -Catalysed	Reactions	of O-Silylated	Dienolates with	Phenylthioal	kyl Halides
<i>0</i> -Silyl	ated Dienolate	(Yield %)	Electrophil	e α:γ ⁸	$E:Z$ for γ	Yield %
	Me ₃ SiO	((4)	55:45	100:0	65
(6)	Ph	Ph (70)	(5)	34:66	100:0	85
	Me ₃ SiQ					
(7)	Et0 (89)	(89)	(4)	50:50	100:0	89
		、	(5)	33:67	100:0	84
	Me ₃ SiO	- ((4)	44:56	100:0	76
(8)	Et0	(93)	(4)	30:70	100:0	70 90
				001/0	100.0	50
	Me ₃ SiQ					
(9)	Me0	(93)	(4)	35:65	67:33	97
(-)			(5)	16:84	80:20	92
	Me ₃ SiO					
(10)	<u> </u>	(96)		0.100	74.04	50
(10)	Bu ^t 0	(30)	(5)	0:100	74:26	72
	Me ₃ SiO	(11)	(4)	20:80	70:30	91
(11)	Pr ₂ ⁱ CHO	(97)	(5)	0:100	81:19	90
(10)	Me ₃ Si0		(5)	(0:100) ⁹	67:33	55
(12)				(0.100)	07.33	55
	Me ₃ S10					
	, ,					
(13)		(77)	(5)	(0:100)9	-	57
	\checkmark					

favour of γ -alkylation.¹⁰ The γ -selectivity could be further enhanced, in the case of esters, by using bulky tertiary (Bu^tO, as in 10)¹¹ or secondary (Prⁱ₂CHO, as in 11) alkoxy groups to hinder attack at the α -position. In general, α -chloro-n-butyl phenyl sulphide was more γ -selective than chloromethyl phenyl sulphide.

As in our earlier work on α -phenylthioalkyl carbonyl compounds,⁷ sulphur may be removed both reductively and oxidatively. Desulphurisation of **14** (R = H or Prⁿ) and **17** with W-2 Raney nickel¹² (Me₂CO-EtOH, 9:1, 20°, 0.5-2 h) gave the $\alpha\beta$ -unsaturated esters (**15**, R = H or Prⁿ) and 4-n-butylcyclohexanone (**18**) respectively, representing overall γ -alkylation. Alternatively,

oxidative sulphur removal using NaIO₄ (MeOH-H₂O, 20°, 16 h) followed by heating the sulphoxide (CCl₄, 70°) gave the conjugated diene esters (**16**, R = H, Prⁿ) and the dienone (**19**), representing overall γ -alkylidenation.

Using our most γ -selective O-silylated dienolate (11), we have also found high γ -selectivity with a range of other carbon electrophiles: acetyl chloride, methyl orthoformate, diethyl acetal, methoxymethyl chloride, α -methyl benzyl bromide and prenyl bromide, all catalysed with zinc bromide.¹³

The O-silylated dienolates were prepared from the corresponding $\alpha\beta$ - and $\beta\gamma$ -unsaturated esters or ketones, as described in the preceding paper. The α -chloroalkyl phenyl sulphides were prepared by chlorination of the corresponding sulphide (PhSCH₂R): SO₂Cl₂-CH₂Cl₂ for R = H¹⁴ and NCS for R = Prⁿ.⁷ For the alkylation reactions, typically, a catalytic amount of powdered anhydrous zinc bromide (ca. 10 mg) was added to a solution of the alkylating agent (1.7 mmol) and the O-silylated dienolate (1.5 mmol) in dry CH₂Cl₂ (2 ml) at room temperature, and the mixture shaken intermittently. After 5-15 min (for most alkylating agents), 2 h (for PhSCH₂Cl), or 16 h (for PhCHMeBr), the solvent was simply evaporated and the residue chromatographed on silica gel to give the alkylated ester or ketone directly. Reductive and oxidative sulphur removal from the α -phenylthioalkyl carbonyl compounds was carried out as described earlier.⁷ In the case of the enone (**17**), hydrogenation of the double bond accompanied desulphurisation with Raney nickel to give the saturated ketone (**18**).

NOTES and REFERENCES

¹Reprints of this paper will not be available.

²C. N. Lam, J. M. Mellor, M. F. Rawlins, and J. H. A. Stibbard, *Tetrahedron Letters*, 4103 (1978) and references therein.

³J. L. Herrmann, G. R. Kieczykowski, and R. H. Schlessinger, Tetrahedron Letters, 2433 (1973).

⁴ In contrast, condensation reactions with carbonyl electrophiles may be directed to the γ-position under equilibrating conditions, see: I. Casirios and R. Mestres, J. Chem. Soc. Perkin I, 1651 (1978) and references therein.

⁵J. A. Katzenellenbogen and A. L. Crumrine, J. Amer. Chem. Soc., **96**, 5662 (1974) and **98**, 4925 (1976); J. A. Oakleaf, M. T. Thomas, A. Wu, and V. Snieckus, Tetrahedron Letters, 1645 (1978).

 6 γ-Selective alkylation of lithium dienolates is possible using β-dialkylamino- or γ-phenylsulphonyl-substituted αβ-unsaturated ketones, see: M. Yashimoto, N. Ishisa, and T. Hiraoka, Tetrahedron Letters, 39 (1973) and P. T. Lansbury and R. W. Erwin, *ibid.*, 2675 (1978).

⁷I. Paterson and I. Fleming, Tetrahedron Letters, 2179(1979); I. Paterson, ibid., 1519(1979).

⁸These ratios apply to isolated and recognisable products. Since the yields were not quantitative, the ratios may have been distorted by selective decomposition of one or other product.

 9 No α -product was detected, but the low yields in these cases make these figures unreliable.

 ^{10}A $\beta\text{-siloxy}$ group has also been found to increase $\gamma\text{-selectivity:}$ P. Brownbridge and T. H. Chan, personal communication.

¹¹The Prⁱ₂CH group was superior to Bu^t, because the ZnBr₂ also catalysed the removal of the latter group, giving the carboxylic acid as well as ester products.

¹²R. Mozingo, Org. Synth., Coll Vol. III, 181 (1955).

¹³Mukaiyama and Ishida had shown¹⁵ that the O-silylated dienolate of crotonaldehyde and of 2,2dimethylacrolein (12) gave γ -alkylation with acetals in the presence of TiCl₄-Ti(PrⁱO)₄. Our observation that the O-silylated dienolates (6), (7), and (9) give easily measurable amounts of α -alkylation would seem to indicate that a phenyl or electron-donating substituent at C-1 increases reactivity at the α -position (C-2) somewhat more that at the γ -position (C-4). Comparison, however, is not straightforward as yet, since we are using different electrophiles, and our one reaction with 12, although we could not find any α -product, did not give a high yield.

¹⁴B. M. Trost and R. A. Kunz, J. Org. Chem., **39**, 2648 (1974).

¹⁵T. Mukaiyama and A. Ishida, Chemistry Letters, 319 and 1201 (1975) and 467 (1977).

(Received in UK 8 June 1979)